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1. RESONANCES

Written 2013 by D. Asner (Pacific Northwest National Laboratory),
C. Hanhart (Forschungszentrum Jülich) and E. Klempt (Bonn).

1.1. General Considerations

For simplicity, throughout this review the formulas are given for distinguishable,
scalar particles. The additional complications that appear in the presence of spins
can be controlled in the helicity framework developed by Jacob and Wick [1], or
in a non-relativistic [2] or relativistic [3] tensor operator formalism. Within these
frames, sequential (cascade) decays are commonly treated as a coherent sum of two-
body interactions. Therefore below most concrete expressions are given for two–body
kinematics.

1.1.1. Properties of the S-matrix:

-10

-5

0

5

10
-10

-5

0

5

10

-2

0

2

-10

-5

0

5

10
-10

-5

0

5

10

-2

0

2

first sheet second sheet

Im(s) Im(s)
Re(s) Re(s)

1(m +m )2
2

1(m +m )2
2

Figure 1.1: Sketch of the imaginary part of a typical single–channel amplitude in
the complex s-plane. The solid dots indicate allowed positions for resonance poles,
the cross for a bound state. The solid line is the physical axis (shifted by iǫ into the
first sheet). The two sheets are connected smoothly along their discontinuities.

The unitary operator that connects asymptotic in and out states is called the S–matrix.
It is an analytic function in the Mandelstam plane up to its branch points and poles.
Branch points appear whenever there is a channel opening — at each threshold the
number of Riemann sheets doubles. Poles refer either to bound states or to resonances.
The former poles are located on the physical sheet, the latter are located on the
unphysical sheet closest to the physical one, traditionally called the second sheet; each can
be accompanied by mirror poles. If there are resonances in subsystems of multi–particle
final states, branch points appear in the complex plane of the second sheet. Any of these
singularities leads to some structure in the observables (see also Ref. [4]). In a partial
wave decomposed amplitude additional singularities may emerge as a function of the
partial-wave projection. For a discussion see, e.g., Ref. [6].
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2 1. Resonances

If for simplicity we now restrict ourselves to reactions involving four particles, the
kinematics of the reaction are fully described by the Mandelstam variables s, t and u (cf.
Eqs. (28)-(30) of the kinematics review). Bound state poles are allowed only on the real
s–axis below the lowest threshold. There is no restriction for the location of poles on the
second sheet — only that analyticity requires that, if there is a pole at some complex
value of s, there must also be a pole at s∗. The pole with a negative imaginary part
is closer to the physical axis and thus influences the observables in the vicinity of the
resonance region more strongly, however, at the threshold both poles are always equally
important. This is illustrated in Fig. 1.1.

The S-matrix is related to the scattering matrix M (c.f. Eq. (8) of the kinematics
review). For two–body scattering it can be cast into the form

Sab = Iab − 2i
√

ρaMab

√
ρb . (1.1)

M is a matrix in channel space and depends, for two–body scattering, on both s and
t. The channel indices a and b are multi–indices specifying all properties of the channel
including the conserved quantum numbers. The two-body phase-space ρ is given (cf.
Eq. 12 of the kinematics review) by

ρa (s)=
1

16π

2|~qa|√
s

. (1.2)

with qa denoting the relative momentum of the decay particles of channel a, with masses
m1 and m2, cf. Eq. (20a) of the kinematics review.

1.1.2. Consequences from unitarity:

In what follows, scattering amplitudes M and decay amplitudes A will be distinguished,
since unitarity puts different constraints on these. The discontinuity of the scattering
amplitude from channel a to channel b [7] is constrained by unitarity to

i [Mba − M
∗

ab
] = (2π)4

∑

c

∫

dΦcM
∗

cb
Mca . (1.3)

Using Disc(M (s)) = 2i Im(M (s + iǫ)) the optical theorem follows

Im (Maa|forward) = 2qa

√
s σtot (a → anything) . (1.4)

The unitarity relation for a decay amplitude of a heavy state H into a channel a is given
by

i
[

AH
a −AH ∗

a

]

= (2π)4
∑

c

∫

dΦcM
∗

caAH
c . (1.5)

From Eq. (1.5) the Watson theorem follows straightforwardly: the phase of A agrees to
that of M as long as only a single channel contributes. For systems where the phase shifts
are known like ππ in S– and P–waves for low energies, the vector AH can be calculated
in a model independent way using dispersion theory [8]. Those methods can also be
generalized to three–body final states and were applied to η → πππ in Ref. [9,10,11] and
to φ and ω to 3π in Ref. [12].
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Figure 1.2: Argand plot showing a diagonal element of a partial-wave amplitude,
abb, as a function of energy. The amplitude leaves the unitary circle (solid line) as
soon as inelasticity sets in, η < 1 (dashed line).

1.1.3. Partial-wave decomposition:

In general, a physical amplitude M (c.f. Eq. (8) of the kinematics review) is a matrix
in channel space. It depends, for two–body scattering, on both s and t. It is often
convenient to expand the amplitudes in partial waves. For this purpose one defines for
the transition matrix from channel a to channel b

Mba (s, t) =

∞
∑

L=0

(2L + 1)M
L

ba
(s) PL (cos (θ)) , (1.6)

where L denotes the angular momentum—in the presence of spins the initial and final
value of L does not to be equal. To simplify notations below we will drop the label L.
The function Mba(s) is expressed in terms of the partial-wave amplitudes aba(s) via

Mba (s) = −a (s)
ba

/
√

ρaρb . (1.7)

The partial-wave amplitudes aba depend on s only. Using Sba = δba + 2iaba one gets from
the unitarity of the S-matrix

abb = (η exp (2iδb) − 1) /2i , (1.8)

where δb (η) denote the phase shift (inelasticity) for the scattering from channel b to
channel b. One has 0 ≤ η ≤ 1, where η = 1 refers to purely elastic scattering. The
evolution with energy of a partial-wave amplitude abb can be displayed as a trajectory in
an Argand plot, as shown in Fig. 1.2. In case of a two–channel problem the off–diagonal
element is typically parametrized as aba =

√

1 − η2/2 exp(i(δb + δa)).
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4 1. Resonances

1.1.4. Concrete parametrizations for scattering and production amplitudes:

It is often convenient to decompose the physical amplitude M into a pole part and a
non–pole part, often called background

M = M
b.g. + M

pole . (1.9)

The splitting given in Eq. (1.9) is not unique and reaction dependent, such that some
resonances show up differently in different reactions. What is independent of the reaction,
however, are the locations of the poles as well as their residues. Those parameters capture
all the properties of a given resonance. The decomposition of Eq. (1.9) is employed, e.g.,
in Ref. [13] to study the lineshape of ψ(3770) and in Refs. [14,15] to investigate πN
scattering.

If there are N resonances in a particular channel,

M
pole
ba

(s) = γb (s)
[

1 − V R (s) Σ (s)
]

−1

bc
V R

ca (s) γa (s) . (1.10)

where all ingredients are matrices in channel space. Especially

V R
ab

(s) = −
N

∑

n=1

gn b gn a

s − M2
n

, (1.11)

γa and Σa denote the normalized vertex function and the self energy, gn a denotes the
coupling of the resonance Rn to channel a and Mn its mass parameter (not to be confused
with the pole position). A relation analogous to Eq. (1.5) holds for any kind of production
amplitude — especially also for the normalized vertex functions, however, with the final
state interaction provided by M b.g.

i [γa − γ∗a] = (2π)4
∑

c

dΦc

(

M
b.g.

)

∗

ca
γc . (1.12)

The discontinuity of the self energy Σa(s) is

i [Σa − Σ∗

a] = (2π)4
∫

dΦa|γa|2 . (1.13)

The real part of Σa can be calculated from Eq. (1.13) via a properly subtracted dispersion
integral. If M b.g. is unitary, the use of Eq. (1.10) leads to a unitary full amplitude, cf.
Eq. (1.9).

If there are no prominent left–hand cuts in the production mechanism, the decay
amplitude AH can be written as

AH
a (s) = γa (s)

[

1 − V R (s)Σ (s)
]

−1

ab
PH

b
(s) , (1.14)
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1. Resonances 5

where PH is a vector in channel space that may be parametrized as

PH

b
(s) = pb (s) −

N
∑

n=1

gn b αH
n

s − M2
n

(1.15)

and the masses Mn need to agree with those in VR. The function pa(s) is a background
term and the αH

n denote the coupling of the heavy state H to the particular resonance Rn

(and eventually to additional particles for which the final state interaction is neglected).
With some additional assumptions, Eq. (1.9) and Eq. (1.14) were employed in Ref. [16]
to study the pion vector form factor. An alternative parametrization for the production
amplitude that is convenient, if the full matrix M — including the resonances — is
known, is given in Ref. [17]

AH
a (s) = Mab (s) P̃H

b
(s) .

The function P̃H(s)b needs to cancel the left–hand cuts of M and therefore could be
strongly energy dependent. In actual applications a low-order polynomial turned out to
be sufficient — c.f. Ref. [17] for a study of γγ → ππ.

For a single resonance (N = 1) Eq. (1.10) reads

Mpole (s)
ba

∣

∣

N=1
= −γb (s)

gb ga

s − M̂R (s)2 + i
√

sΓR (s)tot

γa (s) , (1.16)

where the mass function M̂R(s)2 = M2 +
∑

c
g2
cRe(Σc). The imaginary part of the self

energy gives the width of the resonance via

ΓR
c (s) =

(2π)4

2
√

s
g2
c

∫

dΦc|γc|2; ΓR (s)tot =
∑

c

ΓR
c (s) . (1.17)

Here the sum runs over all channels. Eq. (1.17) agrees with Eq. (10) of the kinematics
review.

The formulas given so far are completely general, however, they require as input, e.g.,
information on the non–resonant scattering in the various channels. It is therefore often
necessary and appropriate to find approximations/parametrizations.

1.2. Common parametrizations for resonances

In most common parametrizations the non–pole interaction, M b.g., is omitted. While
this is a bad approximation for, e.g., scalar–isoscalar ππ interactions at very low energies,
under more favorable conditions this can be justified. Thus in what follows we will assume
M b.g. = 0, which leads to real vertex functions. For two–body channels one writes

γ (s)
a

= qLa
a FLa

(qa, qo) ,
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6 1. Resonances

where La denotes the angular momentum of the decay products, giving rise to the
centrifugal barrier qLa

a . Often one introduces a phenomenological form factor, here
denoted by FLa

(qa, qo). It depends on the channel momentum as well as some intrinsic
scale qo. Often the Blatt-Weisskopf form is chosen [18,19], where, e.g., F 2

0 = 1,
F 2

1 = 2/(qa + qo) and F 2
2 = 13/((qa − 3qo)

2 + 9qaqo). In addition, the couplings ga can
be related to the partial widths via

ga =
1

γa (sR)

√

MRΓR
a

(

M2
R

)

ρa

, (1.18)

where MR =Re(
√

sR) denotes the mass of the resonance located at s = sR.

1.2.1. The Breit–Wigner and Flatté Parametrizations:

If there is only a single resonance present and all relevant thresholds are far away, then
one may replace ΓR(s)tot with a constant, Γ0. Under these conditions also the real part
of Σ is a constant that can be absorbed into the parameter MR and Eq. (1.16) simplifies
to

M
pole
ba

∣

∣

∣

N=1
= − gb ga

s − M2
R + i

√
sΓ0

, (1.19)

which is the standard Breit–Wigner parametrization. For a narrow resonance it is
common to replace

√
s by MR. If there are nearby relevant thresholds, Γ0 becomes s

dependent. For two–body decays one writes

Γ (s) =
∑

c

Γc

(

qc

qR c

)2Lc+1 (

FLc
(qc, qo)

FLc
(qR c, qo)

)2

, (1.20)

where qR c = q(MR)c denotes the decay momentum of resonance R into channel c.
Traditionally MR and Γ(MR) are quoted as Breit-Wigner parameters. However, those
agree to the pole parameters only if MRΓ(MR) ≪ M2

thr. − M2
R, with Mthr. for the

closest relevant threshold. Otherwise the Breit-Wigner parameters deviate from the pole
parameters and are reaction dependent.

If there is more than one resonance in one partial wave that significantly couples to
the same channels, it is in general incorrect to use a sum of Breit-Wigner functions, for
it may violate unitarity constraints. Then more refined methods should be used, like the
K–matrix approximation described in the next section.

Below the corresponding threshold, qc in Eq. (1.20) must be continued analytically: if,
e.g., the particles in channel c have equal mass mc, then

qc =
i

2

√

4m2
c − s for

√
s < 2mc . (1.21)

The resulting line shape above and below the threshold of channel c is called Flatté
parametrization [20]. If the coupling of a resonance to the channel opening nearby is
very strong, the Flatté parametrization shows a scaling invariance and does not allow for
an extraction of individual partial decay widths, but only of ratios [21].
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1.2.2. The K–matrix approximation:

As soon as there is more than one resonance in one channel, the use of the K–matrix
approximation should be preferred compared to the Breit–Wigner parametrization
discussed above. From the considerations formulated in Eq. (1.10), the K–matrix
approximation follows straightforwardly by replacing the self energy Σc by its imaginary
part in the absence of M b.g., but keeping the full matrix structure of V R. Thus, for
two–body intermediate states one writes within this scheme for the self energy

Σ (s)
c
→ iρc γ (s)2

c
. (1.22)

However, in distinction to the Breit-Wigner approach, V R, then called K–matrix, is kept
in the form of Eq. (1.11). The decay amplitude given in Eq. (1.14) then takes the form
of the standard P–vector formalism introduced in Ref. [22]. For N = 1 the amplitude
derived from the K–matrix is identical to that of Eq. (1.19).

Some authors use the analytic continuation of ρc below the threshold via the analytic
continuation of the particle momentum as described above [23].

1.2.3. Further improvements:

The K–matrix described above usually allows one to get a proper fit of physical
amplitudes and it is easy to deal with, however, it also has an important deficit: it
violates constraints from analyticity — e.g., ρa, defined in Eq. (1.2), has a pole at s = 0
and for unequal masses develops an unphysical cut. In addition, the analytic continuation
of the amplitudes into the complex plane is not controlled and typically the parameters
of broad resonances come out wrong (see, e.g., minireview on scalar mesons). A method
to improve the analytic properties was suggested in Refs. [24,25,26,27]. It basically
amounts to replacing the phase-space factor iρa in Eq. (1.22) by an analytic function that
produces the identical imaginary part on the right hand cut. In the simplest case of a
channel with equal masses the expressions that can be used for real values of s read

− ρ̂a

π
log

∣

∣

∣

∣

1 + ρ̂a

1 − ρ̂a

∣

∣

∣

∣

, −2ρ̂a

π
arctan

(

1

ρ̂a

)

, − ρ̂a

π
log

∣

∣

∣

∣

1 + ρ̂a

1 − ρ̂a

∣

∣

∣

∣

+ iρ̂a

for s < 0, 0 < s < 4m2
a, and 4m2

a < s, respectively, with ρ̂a =
√

|1 − 4m2
a/s| for all values

of s, extending the expression of Eq. (1.2) into the regime below threshold. The more
complicated expression for the case of different masses can be found, e.g., in Ref. [25].

If there is only a single resonance in a given channel, it is possible to feed the
imaginary part of the Breit-Wigner function, Eq. (1.19) with an energy-dependent width,
directly into a dispersion integral to get a resonance propagator with the correct analytic
structure [29,30].
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8 1. Resonances

1.3. Properties of resonances

A resonance is characterized not only by is complex pole position but also by its
residues that quantify its couplings to the various channels and allow one to define a
branching ratio also for broader resonances.

In the close vicinity of a pole the scattering matrix M can be written as

lim
s→sR

Mba = − RR
ba

s − sR
, (1.23)

where sR denotes the pole position of the resonance R. The residues may be calculated
via an integration along a closed contour around the pole using

R
R
ba

=
i

2π

∮

dsMba .

In the baryon sector it is common to define the residue — in the listings called rba —
with respect to the partial-wave amplitudes aba(s) defined in Eq. (1.7) and with respect
to

√
s instead of s. The two definitions are related via

rba =

√

ρa (sR) ρb (sR)

4sR
R

R
ba

. (1.24)

For a single, narrow state with an energy-independent background in the resonance
region, far away from all relevant thresholds one finds RR

ba
= γb(sR)gbgaγa(sR) with the

real valued resonance couplings ga defined in Eq. (1.11). Based on this observation one
may use the straightforward generalization of Eq. (1.18) to define a partial width even for
a broad resonance via

ΓR res
a =

|RR
aa|

MR
ρa

(

M2
R

)

, (1.25)

where MR =Re(
√

sR). This expression was used to define a two–photon width for the
broad f0(500) (also called σ) [28]. Eq. (1.25) defines a partial decay width independent
of the reaction used to extract the parameters. It maps smoothly onto the standard
definitions for narrow resonances — cf. Eq. (1.17).
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